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Abstract Pathways involved in the transduction of biological signals within cells overlap with those involved in 
oncogenesis. Previous studies have identified a number of discrete disturbances of some elements of these pathways in 
human lung cancer cells, by virtue of the overexpression or the mutation of certain key molecules. The sequence of 
biochemical events triggered by a mitogenic stimulus such as the exposure to bombesin-like peptides are being 
unravelled. The opportunity exists to identify additional changes involving regulatory proteins which may contribute to 
the regulation of these systems and which may function as suppressors of the malignant phenotype. Furthermore, the 
understanding of these pathways may identify targets for the pharmacological regulation of tumor cell response to 
mitogens which may be usable in the clinic. 
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Over the last decade, investigations into the basic 
mechanisms of neoplasia have identified a number 
of events which contribute to cellular transforma- 
tion. Cellular oncogenes were first identified as the 
normal cellular homologues of the transforming 
genes isolated from animal retroviruses. Their ex- 
haustive study has converged with expanded knowl- 
edge about the pathways which normally govern 
cellular responses to external mitogenic stimuli 
[1,21. These pathways have been diverted towards 
oncogenesis by quantitative and qualitative changes 
in growth factors, growth factor receptors, mem- 
brane associated guanine nucleotide binding pro- 
teins (G-proteins1), membrane associated non recep- 
tor tyrosine kinases, cytoplasmic serine-threonine 
kinases, and nuclear transcription factors. Clearly, 
the understanding of the biochemical pathways 
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generating these cascades of signal transduction 
events have helped us better understand the impli- 
cations of the many genetic lesions found in cancer 
cells. These interactions between the disciplines are 
continuing at a vigorous rate and are likely to lead 
to further important insights. However, as the 
known components of signal transduction cascades 
are becoming continuously more complex, there is 
a significant lag between our understanding of nor- 
mal cellular controls and how they may be involved 
in the genesis of specific malignancies. 

Few cellular models have been exhaustively 
evaluated, among which the murine Swiss 3T3 
cell and the human small cell lung cancer (SCLC) 
cell have been the most exploited [31; as we will 
see, significant similarities and distinctions are 
to be found in the cellular responses to the same 
mitogens in these two models. Importantly, 
many growth factors appear to influence the 
growth of lung cancer cells, often through auto- 
crine growth regulatory loops [41. It has been 
proposed that interruption of autocrinelpara- 
crine growth stimulatory circuits may be exploit- 
able therapeutically [51. However, such efforts 
must take into account the fact that a given cell 
type may produce and respond to multiple 
growth factors [6,71 and that the blockade of any 
single one may well be insufficient to achieve 
clinically significant tumor regression. 
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Whereas these obstacles can potentially be 
circumvented by the use of a combination of 
growth factor antagonists or of antagonists with 
broad specificities [81, another approach is to 
identify the intracellular pathways activated by 
specific growth factor stimulation, some of which 
will be shared by distinct ligands, and to develop 
pharmacological tools to manipulate them. Alter- 
natively, the modulation of specific biochemical 
pathways can antagonize the action of onco- 
genic events and partially revert the malignant 
phenotype [9]. The full exploitation of these 
strategies requires a description of the different 
levels involved in the signal transduction cas- 
cade, of their regulation and relation to each 
other as well as to the events activated by other 
stimuli (cross-talk). It is worth pointing out that 
clinically significant manipulations of signal 
transdudion pathways are commonplace in other 
areas of medicine, as exemplified by the use of 
calcium channel blockers or that of inhibitors of 
cyclic AMP catabolism such as aminophylline. 

ALTERED PROTEIN PHOSPHORYLATION: 
THE KEY BIOCHEMICAL RESULT 

OF SIGNALING (Fig. 1) 

Phosphorylation at serine/ threonine or tyro- 
sine residues is a common mode of regulation of 
protein function. A wide variety of kinases, with 
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Fig. 1 .  Summary of signal transduction pathways. Activation 
of either receptor-linked tyrosine kinases or G protein-coupled 
receptors activate ”second echelon” kinases which then result 
in activation of progress through the cell cycle. 

restricted or promiscuous substrate specifici- 
ties, and a more limited spectrum of protein 
phosphatases, regulate cycles of phosphoryla- 
tion and dephosphorylation. 

Protein Tyrosine Kinases as Part 
of Signal Reception 

Protein tyrosine kinases exist as ligand acti- 
vated transmembrane receptors or as mem- 
brane associated cytoplasmic enzymes who share 
homology with the src oncogene. One of these 
cytoplasmic tyrosine kinases, p56Ick, suggests a 
model for the mode of action for this family. 
p56lCk is known to participate in T cell activation 
by forming a reversible complex with the cell 
surface protein CD4 which binds class TI major 
histocompatibility complex molecules expressed 
on antigen presenting cells. This functional com- 
plex appears to play the same role as a transmem- 
brane tyrosine kinase receptor [lo]. CD4 pro- 
vides the ligand binding function and p56lCk the 
effector function. 

Second Messenger-Activated Kinases 

A second broad class of protein kinases in- 
volved in signal transduction are the serine/ 
threonine kinases many of which are activated 
by intermediary molecules called second messen- 
gers. Second messengers are generated by the 
activation of a different class of membrane recep- 
tors which are characterized structurally by the 
presence of seven hydrophobic domains which 
are thought to span the surface membrane. 
These receptors have no recognized enzymatic 
activity of their own but, once activated by li- 
gand binding, interact with other membrane 
associated proteins to transfer and amplify the 
signal. These intermediary proteins are charac- 
terized by their ability to bind and hydrolyze 
guanine nucleotides (G proteins). Activated G 
proteins in turn reversibly activate effectors that 
generate second messengers such as CAMP (acti- 
vating CAMP-dependent protein kinases), cal- 
cium (activating calcium/calmodulin dependent 
protein kinases), or diacylglycerol (activating pro- 
tein kinase C). 

Second Echelon Kinases: S6, MAP, 
and raf Kinases 

Complex cascades of kinases are now known 
to contribute to mitogen induced cellular re- 
sponses [ 111. These kinases include the normal 
cellular homologue of the rufoncogene as well as 
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others. One of the first signature events of mito- 
genesis to have been identified is the phosphory- 
lation of the S6 ribosomal protein. Certain S6 
kinases are themselves activated through phos- 
phorylation by mitogen-activated protein ki- 
nases (MAPK) which are themselves phosphory- 
lated by a MAP kinase kinase (MAPKK), itself a 
substrate for MAP kinase (MAPK) and a MAP 
kinase kinase kinase (MAPKKK) 1121, indicat- 
ing complex regulatory interactions between the 
partners of this cascade. 

Interactions Between Signaling Pathways 
and Molecules 

Activation of receptor tyrosine kinases can 
affect other pathways through phosphorylation 
of GTPase-activating protein, phosphatidylinosi- 
to1 3’-kinase, or phospholipase C-y [21. Non re- 
ceptor tyrosine kinases also can phosphorylate 
multiple substrates which have remained anony- 
mous until recently. 

Another major insight is the discovery that 
many proteins that are tyrosine kinases or sub- 
strates for tyrosine kinases share certain amino 
acid domains first identified by analogy with the 
protooncogene src. These src homology domains 
(SH2 and SH3) appear to function as intermo- 
lecular recognition sites, allowing the associa- 
tion of these proteins and mutual modulation of 
their function [131. Analogous events appear to  
occur by other mechanisms in the interaction of 
rus proteins and their partners (GTP’ase activat- 
ing proteins and guanine nucleotide exchange 
factors), which alter their function by reversible 
physical association. 

Thus signal transduction involves both events 
which act at a distance through the diffusion of 
soluble second messengers and phosphorylation 
cascades and others which require physical inter- 
action between protein molecules. This hierar- 
chy of functional compartments contributes to 
the control of activation in time and space and 
suggests that relatively subtle changes in the 
overall balance of the system may have pro- 
found phenotypic consequences. 

KNOWN INVOLVEMENT OF SIGNAL 
TRANSDUCINC MOLECULES 
IN LUNG CANCER BIOLOGY 

A number of growth factors, growth factor 
receptors, and oncogenes with signal transduc- 
ing functions have been found to be expressed 
and/or mutated in human lung cancer cells. 
These include the expression of EGF and its 

receptor in non-small cell lung cancer (NSCLC), 
multiple neuropeptides in SCLC and NSCLC, 
the expression of src and lck, the expression of 
raf, and the presence of mutated ras proteins in 
NSCLC [141. 

An area of particular interest is the descrip- 
tion of the pathways activated by mitogenic 
neuropeptides which may act as autocrine 
growth factors in lung cancer cells. Evidence 
suggests that these pathways are shared by sev- 
eral peptide receptors. The remainder of this 
review will thus focus on the events triggered by 
bombesin-like peptides and their regulation as a 
model for neuropeptide dependent cellular re- 
sponses. 

PATH WAYS ACTIVATED BY BOMB ES I N , 
A PROTOTYPICAL NEUROPEPTIDE 

GROWTH FACTOR 
Involvement of G Proteins in Bornbesin Signaling 

GRP and bombesin-like peptides have been 
extensively studied as mitogens in the Swiss 
3T3 system where the signaling events they 
activate have been delineated [3]. In this murine 
system of immortal but inefficiently tumori- 
genic cells, bombesin analogues bind to high 
affinity specific receptors which have been cloned 
and sequenced. The bombesin receptor is a mem- 
ber of the seven transmembrane domains family 
of receptors and is linked to phospholipase C by 
one or more G proteins which have been func- 
tionally characterized but not formally identi- 
fied [15-171. 

PKC Activation by Bornbesin 

Binding of bombesin to its receptor activates 
phosphoinositide turnover with the generation 
of inositol trisphosphate and diacylglycerol and 
the subsequent transient elevation of intracellu- 
lar free calcium concentration ([Ca2+li) and acti- 
vation of protein kinase C (PKC). Some studies 
have suggested that PKC activation can result 
in feedback desensitization of the bombesin re- 
sponse [181, as well as causing a transmodula- 
tion of the EGF receptor, the phosphorylation of 
an 80 kd substrate protein (MARCKS protein 
[191), and activation of the Na+/H+ transporter 
with the consequent elevation in intracellu- 
lar pH. 

Involvement of Second Echelon Kinases 
in Bombesin Signaling 

The stimulation of quiescent Swiss 3T3 cells 
with bombesin results in the activation of a 
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number of serine/threonine protein kinases [201. 
Among these are found several S6 peptide pro- 
tein kinases, two MAP kinases, as well as casein 
kinase 2. The latter can phosphorylate a num- 
ber of nuclear phosphoproteins involved in tran- 
scription control (myc, p53, ~ 6 7 ~ ~ ~ 1 ,  thus provid- 
ing a continuum between binding of bombesin 
to its receptor and the changes in gene expres- 
sion eventually leading to cellular division. 

Activation of the FAK Kinase by Bombesin 

Recent work has shown that a p125 phospho- 
protein associated with focal adhesion points is 
in fact a novel tyrosine kinase (focal adhesion 
kinase, FAK) that is phosphorylated in cells 
harboring an activated src gene or stimulated by 
mitogenic neuropeptides including bombesin 
[21]. These observation serve to link cellular 
skeleton components with mitogenesis and onco- 
genesis. 

An understanding of the functional interrela- 
tionships of these complex cascades of biochemi- 
cal events may be of practical significance. They 
provide targets for pharmacological manipula- 
tion at many stages of lung carcinogenesis. As 
an example of such targets, we will focus the 
remainder of this review on the signals gener- 
ated by bombesin in lung cancer cells and how 
their manipulation may influence the rate of 
cellular growth. 

RESPONSES TO NEUROPEPTIDES AS A MODEL 
FOR THE STUDY OF SIGNAL TRANSDUCTION 

IN LUNG CANCER CELLS 

Lung cancer cells produce and respond to a 
wide variety of peptides, some of which, such as 
gastrin-releasing peptide (a homologue of bombe- 
sin), are known to function in autocrine growth 
stimulatory loops [41. The description of the 
pathways activated by bombesin in Swiss 3T3 
cells has motivated similar studies in SCLC cell 
lines for which bombesin can function as an 
autocrine growth factor. The classical SCLC cell 
line, NCI-H345, has been the most extensively 
studied in this regard. One must keep in mind 
that the responses of cells that are chronically 
exposed to the effects of an autocrine growth 
factor may be different from those of cells which 
are not. The differences of behavior of Swiss 3T3 
cells when exposed to bombesin acutely or 
chronically illustrate this point [22] (see below). 

Early work in SCLC cell lines demonstrated 
that stimulation by a variety of bombesin ana- 
logues resulted in a transient elevation of free 

[Ca2+11, just as in Swiss 3T3 cells [231. This 
response was maximal after exposure to 100 nM 
[Tyr4]-bombesin was derived from both extracel- 
lular fluid and intracellular calcium stores and 
was desensitized to further addition of the pep- 
tide after the initial exposure. Cellular response 
to [Tyr'l-bombesin recovered 90 min after the 
initial peptide was washed out. Further work 
showed that in SCLC NCI-H345, stimulation by 
[Tyr4]-bombesin caused an increase of phosphoi- 
nositide turnover, demonstrating the coupling 
of the bombesin receptor to phospholipase C in 
this cell line, and implicating generation of inosi- 
to1 trisphosphate as a contributing factor in the 
previously described increase in [Ca2+l, [241. Of 
interest, the bombesin responses in this SCLC 
cell line were shown to be modulated by differ- 
ent compounds including cholera toxin and phor- 
bol esters. 

In addition to phospholipase C dependent 
pathways, bombesin is known to lead to the 
activation of collateral pathways (second ech- 
elon kinases and FAK kinase), at least in Swiss 
3T3 cells. Previous reports have shown bombe- 
sin stimulated tyrosine phosphorylation in SCLC 
cells [25,26]. It is tempting to presume that this 
may be related to activation of the FAK kinase 
but this issue has not yet been directly studied. 
The mechanism of activation of these collateral 
pathways is not known, nor is their relative 
contribution to the mitogenic potential of bombe- 
sin. Microinjection of antibodies directed against 
phosphatidylinositol bisphosphate, which effec- 
tively block phosphoinositide turnover gener- 
ated by bombesin, efficiently inhibits bombesin 
stimulated mitogenesis [27]. This suggests that 
these alternative pathways are either not in- 
volved in bombesin stimulated mitogenesis or 
are themselves activated by the products of phos- 
phoinositide hydrolysis. 

Ultimately, the mitogenic potential of the 
original stimulus will translate into a change in 
the pattern of gene expression in preparation for 
DNA synthesis and cell division. Bombesin 
stimulation of Swiss 3T3 is known to tran- 
siently increase the expression of the nuclear 
oncogenes and transcription factors c-fos and 
c-myc. However, pretreatment of Swiss 3T3 cells 
with pertussis toxin effectively inhibits bombe- 
sin induced DNA synthesis and c-myr. expres- 
sion without affecting the phospholipase C de- 
pendent responses of inositol phosphate 
generation, elevation of [Ca2+], and PKC activa- 
tion [28,29]. Other evidence shows that desensi- 
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tization of acute events such as [Ca2+li re- 
sponses can be dissociated from desensitization 
of DNA synthesis provoked by chronic exposure 
of Swiss 3T3 cells to bombesin [221. This sug- 
gests that not all the cellular events activated by 
bombesin are intimately or directly linked to 
mitogenesis. Further work needs to be done to 
delineate which of the distal pathways involved 
in Swiss 3T3 responses to bombesin are also 
operative in lung cancer cells. 

NEWER ISSUES IN LUNG CARCINOMA 
RELATED SIGNALS 

Desensitization to Bombesin Peptides 

Cells exposed to bombesin remain refractory 
to a subsequent addition of bombesin for at least 
90 min after the initial bombesin molecules are 
washed away [23]. Rapid desensitization after 
an acute exposure to their cognate ligand is an 
ubiquitous feature of G protein coupled recep- 
tors and deserves to  be understood as perturba- 
tions of this pathway may lead to amplification 
or undue persistence of the mitogenic response 
to  the growth factor. The best understood mecha- 
nisms of desensitization are those responsible 
for the regulation of p2 adrenergic receptor 
(PAR) function [301. In this case, desensitiza- 
tion is dependent on phosphorylation of the 
receptor and its removal from the cell mem- 
brane. 

Phosphorylation of PAR is known to occur 
through the action of two kinases, CAMP depen- 
dent protein kinase (PKA) and the p adrenergic 
receptor kinase (bARK). Phosphorylation by 
PKA directly interferes with the receptor activa- 
tion of G protein function. In contrast, PARK 
phosphorylates only the agonist occupied recep- 
tor in a way which still allows interaction of the 
receptor with the G protein. The agonist occu- 
pied PARK phosphorylated receptor-G protein 
complex is recognized by another protein, p 
arrestin, which blocks the receptor-G protein 
interaction. In addition to desensitization from 
receptor phosphorylation, after exposure to li- 
gand, p adrenergic receptors are rapidly seques- 
tered and may also undergo a more prolonged 
processing, resulting in their destruction. 

It was noted that pretreatment of NCI-H345 
with the phorbol ester and PKC activator phor- 
bol 12-myristate-13 acetate (PMA) acutely de- 
sensitized cells to the subsequent addition of 
[Tyr41-bombesin, abrogating the [Ca2+li and 
phosphoinositide responses. Prolonged (48 h) 
pretreatment of NCI-H345 with PMA, thus de- 

pleting the cells of PKC, blocked the effects of 
acute addition to PMA while preserving the 
intensity of the response to [Tyr41 bombesin 
[24,311. 

These observations tentatively implicated F'KC 
as a possible negative regulator of bombesin 
induced signals, a notion which has been rein- 
forced by the description of canonical PKC phos- 
phorylation sites in the intracytoplasmic do- 
mains of the cloned human bombesin receptors 
[32]. In different systems, down-regulation of 
PKC by a chronic treatment with phorbol esters 
has been associated with an amplification of 
response [331 or alternatively to no change in 
primary response or in homologous desensitiza- 
tion [341. In addition, the PKC dependent desen- 
sitization has been associated with a decrease in 
receptor affinity [351 or to a decrease in recep- 
tor/G protein coupling as suggested by a loss of 
GTP modulation of receptor affinity [361. How- 
ever, the activation of PKC by bombesin in 
SCLC cells has yet to be directly demonstrated. 
Cells depleted of PKC by prolonged pretreat- 
ment with PMA and which retain a normal 
response to acute exposure to [Tyr4]-bombesin 
also retain the homologous desensitization to 
further addition of the peptide [311. Thus, desen- 
sitization of bombesin responses in SCLC can- 
not be clearly and uniquely attributable to PKC 
activation. Nonetheless, modulators of PKC ac- 
tivity have the potential to act as desensitizers 
of a number of pathways and may be of therapeu- 
tic utility. 

It is possible that mechanisms analogous to 
those involved in p adrenergic regulation or 
others such as effects on phospholipase C sub- 
strates or phospholipase C itself could contrib- 
ute to desensitization of bombesin responses in 
human lung cancer cells. Current evidence sug- 
gests that in fact the mechanisms of desensitiza- 
tion of bombesin responses may be distinct in 
Swiss 3T3 cells and SCLC cells (see Table I). For 
instance, exposure of Swiss 3T3 cells to radioio- 
dinated ligand at 37°C results in rapid internal- 
ization (50% after 5 min), suggesting that recep- 
tor sequestration is an important component of 
acute desensitization in this cell type [371. In 
contrast, in the SCLC cell line NCI-H345, most 
of the radioligand was still acid-extractable from 
the cell surface after a 2 h exposure at 37"C, 
conditions under which the cell shows no fur- 
ther [Ca2+li response to repeated additions of 
bombesin [381. This suggests that, unlike the 
situation in Swiss 3T3 cells, receptor sequestra- 



Signal Transduction Pathways in Lung Cancer 233 

TABLE I. A Comparison of Some Features of 
Bombesin Responses Between Swiss 3T3 and 

SCLC Cells 

Swiss3T3 SCLC 

Homologous desensitization Yes Yes 
Desensitization by PKC activators Yes Yes 
Receptor internalized Yes No 
Heterologous desensitization in 
response to vasopressin Yes No 

tion is not an important component of the acute 
desensitization of the bombesin response in 
SCLC cells. 

Acute homologous desensitization to bombe- 
sin occurs in Swiss 3T3 cells with abrogation of 
early signals such as calcium mobilization at 
least partly through receptor sequestration. 
Chronic exposure to bombesin results in chronic 
desensitization through down-regulation of 
bombesin cell surface receptors [22]. This raises 
interesting questions about the maintenance of 
a sustained mitogenic signal in the context of an 
autocrine growth stimulatory loop. Could the 
mechanism underlying desensitization to bombe- 
sin stimuli be impaired in human lung cancer 
cells? 

We have noted another significant difference 
in the behavior of bombesin signals in Swiss 3T3 
and SCLC cells. Heterologous desensitization, 
i.e., desensitization to structurally unrelated li- 
gands after the acute or chronic exposure to 
another growth factor, is present in Swiss 3T3 
cells. The exposure of cells to bombesin inhibits 
the subsequent [Ca2+lj responses to vasopressin, 
and vice versa [22,391. In addition, chronic expo- 
sure to vasopressin inhibits DNA synthesis in 
response to bombesin without altering the bind- 
ing characteristics of the bombesin receptor [401. 
This heterologous desensitization, at least in 
terms of acute [Ca2+li responses, is not present 
in human SCLC cells [71 and Viallet and Saus- 
ville, unpublished observations). 

Some authors have reported that certain 
bombesin producing SCLC cell lines, despite 
eliciting a [Ca2+li response to bombesin related 
peptides, showed no enhanced DNA synthesis 
1411. These data would appear to contradict 
others, indicating that bombesin is an autocrine 
growth factor for SCLC [41. Although these 
conditions may be related to cell culture condi- 
tions, one possible interpretation is that the 
tonic mitogenic potential of autocrine bombesin 
production can only be realized if an additional 

lesion, i.e., a defect in the desensitization pro- 
cess, is also present. One may postulate the 
existence of a bombesin receptor kinase and its 
arrestin which may be the target for mutations 
or deletions which may serve to enhance the 
mitogenicity of bombesin and perhaps other neu- 
ropeptides. This notion is reinforced by the re- 
cent demonstration that under certah condi- 
tions, the absolute amount of P-arrestin and 
P-adrenergic receptor kinase are limiting in p2- 
adrenergic receptor desensitization 1421. Thus 
kinases involved in the desensitization of mito- 
genic neuropeptide responses may demonstrate 
tumor suppressor functions. 

Interruption of Pathways Stimulated by Several 
Mitogens as a Possible Strategy for the Inhibition 

of Lung Cancer Cell Growth 

Since G proteins couple many receptor sub- 
types to their effectors, they may be an attrac- 
tive target for attempts at simultaneously inter- 
rupting signals generated by multiple growth 
factors. As in other cellular systems. [Tyr41- 
bombesin stimulated activation of phospholi- 
pase C is modulated by guanine nucleotides f171, 
thus clearly implicating one or more G proteins 
in the coupling of the bombesin receptor to 
phospholipase C in SCLC cells. 

Emerging evidence suggests that combina- 
tions of the known 16 a, 4 p, and 5 y subunit 
genes can produce a large enough variety of 
heterotrimers to selectively couple specific recep- 
tors to specific effectors [43,44]. Howevw, bacte- 
rial toxins such as pertussis (PT) and cholera 
(CT) toxins have the ability to ADP-rtbosylate 
certain G proteins, thus altering their function. 
These toxins have been important pharmacologi- 
cal probes in the elucidation of the involvement 
of G proteins in cellular responses. Prior work 
had implicated PT as an inhibitor of some but 
not other bombesin stimulated responses in 
Swiss 3T3 and NIH 3T3 cells [28,291. When 
studied, CT appeared to have no action in these 
cell systems. However, because we had observed 
a major inhibitory effect of CT on [Tel-bombe- 
sin stimulated phosphoinositide turnover and 
[Ca2+], elevation in SCLC NCI-H345 [24], we 
studied the effects of CT on the growth of this 
cell line and found that CT was profoundly 
growth inhibitory at nanomolar concentrations 
1381. We found that CT pretreatment could in- 
hibit the [Ca2+], response to multiple ligands 
without affecting the binding characteristics of 
1125-[Tyr4]-bombesin. This latter observation in- 
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dicated that the effects of CT on bombesin acti- 
vated signal transduction in SCLC cells was not 
through an interaction with a G protein cou- 
pling the bombesin receptor to phospholipase C. 
We generalized our findings to a wide selection 
of SCLC and NSCLC cell lines and demon- 
strated that CT growth inhibition could be found 
in both cell types [45]. Whereas CT sensitivity in 
SCLC appears to correlate faithfully with expres- 
sion of the cellular receptor for CT, the ganglio- 
side in SCLC, many CT resistant NSCLC 
cell lines were found to express abundant GM1 
ganglioside. Accumulated evidence strongly sug- 
gests that elevation of intracellular CAMP gener- 
ated by CT cannot account for the cellular ef- 
fects of CT in this system. Current attention is 
directed at the possibility that CT could act by 
depleting the membrane of PIP2, the immediate 
substrate for phospholipase C [46-481. How- 
ever, other possible mechanisms include redistri- 
bution of G-Py subunits, degradation of G-cu 
subunits, and alteration of intracellular mem- 
brane transport and handling [491. 

These experiments demonstrate that CT is a 
probe for a growth inhibitory pathway present 
in lung cancer cells which may act through inhi- 
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bition of signal transduction stimulated by a 
wide variety of ligands. Whether it is the cumu- 
lative effect of the deprivation of these trophic 
influences or as yet uncharacterized cellular ef- 
fects of CT which account for the growth inhibi- 
tion awaits further study. However, the fact 
that the inhibitory actions of CT can be demon- 
strated in vivo (see Fig. 2) as well as in vitro, 
emphasizes that the understanding of these 
mechanisms may be rewarding. 

Clarification of the Role of the Known 
and Newer Tyrosine Kinases 

Human NSCLC cells express a variety of tyro- 
sine kinase surface receptor such as the EGF 
receptor and the c-metlhepatocyte growth fac- 
tor (HGF) receptor. A recent study has sug- 
gested that whereas HGF appeared to act as an 
autocrine growth inhibitor of normal human 
bronchial epithelial cells, it stimulated the 
growth of 45% of the NSCLC cell lines tested 
[501. The HGF receptor of these cells was consti- 
tutively phosphorylated on tyrosine residues. 
Whether these differences in responses to HGF 
between the normal and malignant cells of bron- 
chial origin are related to perturbations in the 
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Fig. 2. Cholera toxin inhibits NCLN592 growth in vivo. N-592 xenografts in athymic mice were treated 
on days 26, 28, 30, 33, 35, 37, and 40 with the indicated amount of cholera toxin per dose, and tumor 
weight scored. The 0.07 mg/kg/dose was accompanied by excessive toxicity, while the two higher dose 
regimens were well tolerated (minimum T/C = 28% on day 43 with a dose of 0.2 mg/kg/injection). Data 
courtesy of Dr. J. Plowman. 
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regulation of intracellular signalling or to other 
factors cannot be determined at this point. How- 
ever, it is of interest that a novel receptor protein- 
tyrosine phosphatase has been mapped to an 
area of chromosome 3 frequently deleted in lung 
cancer cells [511. 

CONCLUSIONS 

The regulation of signal transduction path- 
ways in cancer cells offers opportunities for the 
development of sorely needed novel therapeutic 
approaches for lung cancer. Already, animal 
models have shown promise for CAMP ana- 
logues, Ca2+/calmodulin inhibitors [52,531, and 
cholera toxin. Additional studies should delin- 
eate whether specific functional abnormalities 
in these pathways contribute to the malignant 
phenotype and constitute discrete targets for 
developmental therapeutics. The human lung 
cancer cell lines that have been studied and are 
now broadly available should constitute a valu- 
able resource for further investigations. 
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